You can register on this site as a Company User or an Independent user.
Company Registration:
1.To register your company with your basic company details.
User Registration:
2.To register as company user or individual user.
a)For registering as company user you must have Company Code.
b)Individual User registration you do not require any Company Code.
23 Jun 2016
POSTED BY - Mineexcellence
Drilling and blasting is made up of groups of tasks, which are performed to produce broken rock with specific fragmentation and muck pile shape & displacement while ensuring that safety, statutory requirements and/or environmental compliance are met. Procedures need to be defined for carrying out drilling and blasting to obtain desired results. Data collection: pre-blast, during the blast and post-blast is critical to the blasting process -- for blast design, for prediction of impacts, for taking corrective steps at execution stage and for further analysis and plan-ning purposes.
Generally blasting related information is poorly managed with disjointed and unrelated information technology systems managing parts of blasting data. Data is often moved from one system to another, sometimes manually. A data management system not only ensures information storage, but also acts as an intelligent system for optimization of blasting and overall operation. The review and analysis of past data can improve blast design, blast execution and help in the achievement of desired blasting outcomes and downstream productivity, and process im-provement by adjustment of drilling and blasting pa-rameters. Based on the database and its search and
analysis capabilities, the system can provide oppor-tunities for taking corrective steps by changing ex-plosive charge distribution, initiation timing and se-quence for controlling fragmentation size, vibration and flyrock. Data obtained from blast face profiling tool, vibration, flyrock and fragmentation prediction tools, can be directly linked to a database incorporat-ing explosives and accessories used. Modular soft-ware may use information to create specific hole by hole explosives loading and create load sheets ac-cording to geotechnical zone characteristics and re-sults required.
An important component to the management of any process is the measurement of key parameters, which in turn are used to monitor, control and pro-vide the feedback necessary to improve the process. Any “optimization” (or improvement) of blasting should not only look at the blast itself, but also to all consequences of blasting results. These considera-tions lead to overall-integrated concept. It is obvious that such approach not only provides data for blast-ing improvement, but will also be helpful for im-provement of all other operations as well.
Several commercial database systems for mining and blasting are available for storing and analyzing data. However, blasting related data base systems have not found to be popular at the mine level by In-dian mining and blasting organizations. Organiza-tions are either recording data in registers and/or are using excel sheet. Difficulty is about customizing imported software and also updating the database. Further, blast execution is not similar in different countries while using similar explosives and initiat-ing systems. In general, mines are keeping blast data in paper based system and have generally not bene-fitted from recent technology advancement. Draw-backs of the system include that record retrieval is time consuming, record cannot be used for analysis, and insufficient data are recorded. Advantage of us-ing information technology data base are systematic storage of data, retrieval of data over a long time period, analysis of data for improving efficiencies, automated reports, view and analysis at distant loca-tion if desired. In general separate reports have to be prepared/ submitted to different regulatory authori-ties, to management and also needed for own re-quirement of mine operators. This paper discusses how computerized data collection and analysis can provide improved blast accuracy and performance achieved through a more intelligent blast design, made possible by combining with distinct data base. This is accomplished by focusing on key perfor-mance indicators derived from the historical perfor-mance of drill and blast events. The searchable data base of blasting information drives incremental im-provement in performance
2 DATA MANAGEMENT
A data management system not only ensures in-formation storage, but also acts as an intelligent sys-tem as an aid for blast design, prediction of impacts and analysis. Database can be integrated with mine planning, drill guidance, field survey, load design parameters and post-blast evaluation (Figure 1). Da-tabase is foundation for optimization of blasting and overall mining, tunneling or quarrying operation. Based on the database and its search and analysis capabilities, the system can provide opportunities for getting dynamic drilling and blasting parameters, vi-bration constants and predictions, flyrock predic-tions, fragmentation size predictions. This informa-tion helps in adjustment of drilling and blasting parameters based on optimized results.
Besides measured parameters related to blasting parameters, explosives accessories, geotechnical in-formation, environmental information are required for planning and design of blast block (Birch, et al., 2002; Hutchins, 2004; Bhandari and Bhandari, 2006, Bhandari, 2011). Blast data management sys-tem stores blast details, blast parameters, blast pat-tern, face profile, explosive consumption, charging details, costs, weather information, pre-blast survey, post-blast evaluation data, fragmentation informa-tion, photograph(s), videos, accidents, misfires,
flyrock, vibration record and information for vibra-tion analysis. Video and photographic records also provide opportunity to analyze displacement and fly-rock. These also indicate face movement and hole by hole behavior. Integration of the following also needs to be accomplished:
Data obtained from blast hole face profiling tool, vibration prediction tool, and direct data link to a da-tabase incorporating all the major manufacturers products and an interface allows the user to add new product ranges and create custom products. Directly import drill patterns and pit shells from the mine planning packages. By linking with geological data/ chemical data the blast block can provide quality as-sessment.
Performance and cost of blasts can be monitored and Key Performance Indicators can be determined. Appropriate blast designs for particular areas of mine and different zones can be identi-fied. Optimizing the blasting process involves drill-ing accuracy and efficiency, profiling of exposed faces for mining applications, tailored loading ex-plosives according to face profile and rock condi-tions at depth, and designing proper parameters, de-lay timing and initiation sequence. Reports can be generated as per various requirements of the organi-zation or statutory authorities. Blast records must be held for statuary purposes and would be useful in case of litigations.
3 CASE STUDY -- ADITYA LIMESTONE
MINE Aditya limestone openpit mine belongs to Ultra Tech Cement Ltd group which has several lime stone openpit mines spread across India. Aditya mine is designed to produce 6.6 million tonnes li-mestone per annum for its cement plant, situated around 2 km away (Parihar et al, 2009). The ore to overburden ratio is 1:0.33. Thus, total rock handling is around 9 million tonnes per annum. Presently, there are two working pits. The mine is surrounded by small villages.
Geology: Aditya Limestone deposit belongs to Nimbahera limestone formation: limestone, shale and clay are the major rock types. Limestone is fine grained, thinly laminated to massive in structure. Aditya limestone mine deposit is highly jointed. The joints are multi-directional. Some of them are filled with overburden soil and clay. The deposit was sub-jected to structural disturbances of moderate intensi-ty as evidenced from numerous minor and major folds and joints.
Broadly, the structure of the entire deposit can be classified as a synform. In spite of the above folds, study of dip and strike readings indicates N - S trend with maximum of 10o deviation on either side. The amount of dip varies between a narrow range of 0o to 20o. Dip direction changes from East to West due to folding. There is plunge of about 5o in strike di-rection.
Mining: Mining is carried out by fully mecha-nized open pit mining method. The working pit is below the general topography of the area. Working pits have been developed with working benches of 9.0 m. height. At present, the work is going on in three benches. Drilling is done with the help of ROC L6 and IBH-10 drill machines of 100mm-115mm diameter. A set of about 25 holes is blasted. Excava-tion and loading operations are carried out by hy-
draulic excavators. At a time two excavators are used for this operation. Transportation of limestone from working face to crusher hopper is carried out in 35/60 tonner dumpers. Before crushing, the limes-tone from crusher hopper is passed through grizzly screen or screening out intrusive clay.
The mines have kept blasting records since the beginning of mining operations in 1995, initially in hand written format and thereafter have been main-taining records in Excel sheet format ( Figure 3 & 4) for its blasting operations, explosive consump-tions, drilling performance, blasting costs. These da-ta show considerable improvement in blasting per-formance and at the same costs have also reduced. This has been possible in spite of much increase in costs of explosive, accessories and labour and other input. Continuously several new techniques have al-so been adopted with indigenous and local methods.. Data collection and adoption of many scientific techniques such as Indian indigenous air gap, indi-genous stem plug, indigenous rock plug techniques
and tools have helped in achieving the above stated results. An example of charging with indigenously developed wooden spacers for giving ai rgap (Figure 5).
Blast records from 1995 till date ha s helped the mine in improving rock breakage of limestone powder factor from 6.5 tons/kg to 14 tons/kg (Figure 6) drill factor from 45 tons/m to 75 ton s/m (Figure 7), thus reducing costs by 50% (Figure 8) while im-proving crusher productivity from 764 t ons per hour to 932 tons per hour and controlling vibration, fly-rock and dust.
4 BLAST INFORMATION MANAGEMENT
SYSTEM (BIMS)
Blast Information Manage ment System (BIMS) provides information to meet th e strategic and opera-tional needs for planning, controlling and decision-making for optimizing mining operations (Bhandari and Bhandari, 2006). BIMS provides methods to store, manage, document and retrieve drill and blast related information The syste m stores blast details, actual blast parameters, blast pattern, face profile, explosive consumption, charginng details (Figure 9),
The mine is now using blast related information data management system for record, analysis and re-porting. This indigenously developed system is reli-able, easy to use, stores large data and provides re-trieval and analysis of the stored data and also provides costs, weather information, p re-blast sur-vey, post-blast evaluation data, fragmentation infor-mation, photograph(s), videos, accidents, misfires, flyrock, vibration record and informatio n for vibra-tion analysis records (Figure 9). Softwa re also pro-vides opportunity to analyze displacement and fly-rock, back break/over break records to be maintained and analyzed.
Recorded videos and stored in the database can also be used for observing face m ovement and hole by hole behavior.
The stored blast information data can be retrieved quickly and easily. Performance and cost of blasts can be monitored and appropriate blast designs for particular areas or different zones can be identi-fied. The data management an d retrieval is easy and simple to use which can be ca rried out in a few mi-helps in optimizing various operations. Readily available past data in a logical format and blasting data analysis tools are the key features of the data-base.
Details of explosive charge distribution and initiation used for the holes
The database can be extended to integrate with other systems such as ERP, CMMS etc. If the soft-ware is operated in conjunction with a comprehen-sive monitoring program, it can contribute to the ef-ficient running of an operation and reduce environmental effects to a minimum. Importing data using .csv file, Excel and other popular mining soft-ware makes it is possible to reduce input work. En-tered data can be edited through Edit Parameters.
Figure 10. Result of blasting along with Photo-graph & Video This tool provides a way of trapping the expe-rience of drilling and blasting personnel to better control critical parameters such as dilution, vibra-tion, fragmentation, and flyrock and fines genera-tion. Integration with other software such as that used for vibration monitoring and analysis, fragmentation analysis etc. can be carried out so as to provide sim-plified management system.
Many central and state agencies, concerned with Explosives Security, Mines Safety and the Environ-mental Protection (DEP), are increasing their expec-tations for strict accounting of inventory and blast documentation. Blasting company executives and managers are now facing the possibility of incarcera-tion, fines and suspended operations if their docu-mentation is not in order. The database can be tai-lored according products and practices, to customer requirements and can be maintained.
This database has also searching options using which the user can look for the records of blasts as per his defined criteria. Currently, the software uses the following criteria for the search option: between dates, by performance of explosives or initiating sys-tem, by vibration limits, by fragmentation size, by location of blasting zone or accident etc.
Presentation of analysis of data, compliance re-ports suitable for regulatory bodies, archiving and viewing of data at distance location, costs can be de-veloped. Reports suitable for Occupational Health and Safety (i.e. incident reports) can be compiled. Key performance indicators are derived.
Figure 12. Reinforcement of vibration before blasts helps in changing delays
6 CONCLUSIONS
Database connects all information related to blasting operation to provide reporting, trends and analysis. Custom graphs and reports reduce work for providing reports to any desktop and can be fully customizable to meet key production indicators, and daily reports. Software based data base provides valuable time for engineering and mining profes-sionals by integrating disparate mining data capture software systems and removing dependencies on Excel spreadsheets. This information stored and ana-lysed helps in better control and optimization of mining operations. Data base helps to quickly re-spond to information and remain successful in to-day’s competitive market place. Web based versions and tablet PC would make data acquisition easy.
Use of database helps in improving blast efficiencies and demonstrate that an improvement has been achieved there needs to be a comprehensive mea-surement system, which is capable of setting base-line, and then tracking the changes made to the process.
7. REFERENCES
Bhandari, S. & Bhandari, A. 2006.; Blast Operations Information Management System, Journal of Mines, Metals and Fuels, Vol. 54 no.12
Bhandari, S. 2011, Information Management for Im-proved Blasting Operations and Environmental Control, 3rd Asia- Pacific Symposium on Blasting Techniques, August 10~13, Xiamen, China
Birch, W. J., Pegden, M. and Stothard, P., (2002) Intelligent Information Management for Improved Blast-ing Practice and Environmental Compliance. Proc. 28th Annual Conf. on Explosives and Blasting Technique, Las Vegas
Hutchings, J. 2004; Improving and Designing Blasting Using TQM and Appropriate IT. Proc. 30th Ann. Conf. on Explosives and Blasting Technique, International So-ciety of Explosive Engineers,
La Rosa, D.; 2001The Development of an Information Management System for the Improvement of Drilling and Blasting in Mining Operations. Proc. 29th Int. Symp. Computer Applications in the Minerals Industries. Bei-jing, 367-372,
Parihar, C. P., Lahoti, M. L.and Mishra, P.L. (2009) Optimisation of Limestone Deposits in Cement Manufac-turing- A Case Study, Int. Conf. Advanced Technologyin Exploration and Exploitation of Minerals, Jodhpur. Feb. 14-16,261-269
Richards, A. B. and Moore, A. J., 1995: Blast Vibra-tion Control by Wave front Reinforcement Techniques in Explo 1995, pp 323-327 (The Australasian Institute of Mining and Metallurgy in association with The Interna-tional Society of Explosives Engineers: Brisbane).
Richards, A B and Moore, A J, 2004: Flyrock Control
– By Chance or Design? Proc. 30th Ann. Conf. on Explo-sives and Blasting Technique, International Society of Explosive Engineers,
This privacy policy has been compiled to better serve those who are concerned with how their 'Personally identifiable information' (PII) is being used online. PII is information that can be used on its own or with other information to identify, contact, or locate a single person, or to identify an individual in context. Please read our privacy policy carefully to get a clear understanding of how we collect, use, protect or otherwise handle your Personally Identifiable Information in accordance with our website.
What personal information do we collect from the people that visit our blog, website or app?
When registering on our site, as appropriate, you may be asked to enter your name, email address, phone number or other details to help you with your experience.
Accessing and Updating Your Personal Information
You may update Your Personal Information via MineExcellence Account at this Website. If You should become aware that Your Personal Information with MineExcellence is not complete and accurate, You shall promptly update Your Personal Information via MineExcellence Account.
How do we protect visitor information?
We use vulnerability scanning and/or scanning to PCI standards.
We also use Malware Scanning.
And we use an SSL certificate as well to protect your content from third party.
Do we use 'cookies'?
We do not use cookies for tracking purposes.
You can choose to have your computer warn you each time a cookie is being sent, or you can choose to turn off all cookies. You do this through your browser (like Internet Explorer) settings. Each browser is a little different, so look at your browser's Help menu to learn the correct way to modify your cookies.
Third Party Disclosure
We do not sell, trade, or otherwise transfer to outside parties your personally identifiable information.
Third party links
We do not include or offer third party products or services on our website.
COPPA (Children Online Privacy Protection Act)
When it comes to the collection of personal information from children under 13, the Children's Online Privacy Protection Act (COPPA) puts parents in control. The Federal Trade Commission, the nation's consumer protection agency, enforces the COPPA Rule, which spells out what operators of websites and online services must do to protect children's privacy and safety online.
We do not specifically market to children under 13.
Fair Information Practices
The Fair Information Practices Principles form the backbone of privacy law and the concepts they include have played a significant role in the development of data protection laws around the globe. Understanding the Fair Information Practice Principles and how they should be implemented is critical to comply with the various privacy laws that protect personal information.
Information Security
We work hard to protect MineExcellence and our users from unauthorized access to or unauthorized alteration, disclosure or destruction of information we hold. In particular:
We encrypt many of our services using SSL.
We review our information collection, storage and processing practices, including physical security measures, to guard against unauthorized access to systems.
In order to be in line with Fair Information Practices we will take the following responsive action, should a data breach occur:
We will notify the users via email within 7 business days.
We also agree to the individual redress principle, which requires that individuals have a right to pursue legally enforceable rights against data collectors and processors who fail to adhere to the law. This principle requires not only those individuals have enforceable rights against data users, but also that individuals have recourse to courts or a government agency to investigate and/or prosecute non-compliance by data processors.
CAN SPAM Act
The CAN-SPAM Act is a law that sets the rules for commercial email, establishes requirements for commercial messages, gives recipients the right to have emails stopped from being sent to them, and spells out tough penalties for violations.
We collect your email address in order to be in accordance with CANSPAM we agree to the following:
If at any time you would like to unsubscribe, you can email us at and we will promptly remove you from ALLcorrespondence.
Your Rights
In accordance with the applicable law, MineExcellence will provide You with access to Your Personal Information and, as appropriate, the right to intervene in respect of Your Personal Information. You may also be entitled to object to the processing of Your Personal Information by MineExcellence or to request the deletion of Your Personal Information.
Questions About this Privacy Policy; Changes to this Privacy Policy
If You have any questions about this Privacy Policy, please send Your inquiry to "email address", or to the applicable MineExcellence office identified in the "Contact Us" section of the Website.
MineExcellence reserves the right to change this Privacy Policy at any time by posting notice of the changes on the Website.
1. Registration and Subscription
When you register, you are registering or subscribing as a company, company user, or individual user of MineExcellence. Company user will register with specific company code. Access to registered user content and subscription areas are via your [email address or username and password].
We allow you access to the registered user content and subscription areas of the website on the basis that:
(i) Your email address and password are personal to you and may not be used by anyone else to access MineExcellence.
(ii) You will not do anything which would assist anyone who is not a registered user to gain access to or sell any content contained in the registered content or subscriber areas of MineExcellence.
(iii) You do not maliciously create additional registered user or subscription accounts for the purpose of abusing the functionality of the website, or other users; nor do you seek to pass yourself off as another user.
(iv) You comply with these terms and conditions.
If, for any reason, we believe that you have not complied with these requirements, we may, at our discretion, cancel your access to the registered user and subscription areas of MineExcellence immediately and without giving you any advance notice.
2. Termination of Registration and Subscription
If we wish to bring the agreement to an end, we will do so by emailing you at the address you have registered stating that the agreement has terminated. The agreement will terminate and your email address and password will become invalid on MineExcellence immediately.
You can also terminate this agreement and your account at any time by emailing your notice to us at but your information may remain stored in archive on our servers even after the deletion or the termination of your account.
3. Use of Material Appearing on MineExcellence
For the purposes of these terms of service, "material" means material including, without limitation, text, video, graphics, photographs and audio material, published on the MineExcellence website, whether copyright of MineExcellence or a third party.
You may download and print extracts from the material and make copies of these for your own personal and non-commercial use only. You must not reproduce any part of MineExcellence or the material or transmit it to or store it in any other website or disseminate any part of the material in any other form, unless we have indicated that you may do so.
We may be prepared to allow you to distribute or reproduce other parts of MineExcellence or the material in certain circumstances. Please email us if you wish to apply for permission to do so.
4. Disclaimer of Liability
To the extent permitted at law, we do not accept any responsibility for any statement in the material. You must not rely on any statement we have published on MineExcellence without first taking specialist professional advice. Nothing in the material is provided for any specific purpose or at the request of any particular person.
For the avoidance of confusion, we will not be liable for any loss caused as a result of your doing, or not doing, anything as a result of viewing, reading or listening to the material or any part of it.
We do not warrant that MineExcellence or any of its contents is virus free. You must take your own precautions in this respect as we accept no responsibility for any infection by virus or other contamination or by anything which has destructive properties.
6. Data Protection
Please see our privacy policy for details of how personal data may be stored and processed.
7. Variations
These terms may be varied from time to time. Please ensure that you review these terms and conditions regularly as you will be deemed to have accepted a variation if you continue to use the website after it has been posted.
8. Force Majeure
Although we will do our best to provide constant, uninterrupted access to MineExcellence, we do not guarantee this. We accept no responsibility or liability for any interruption or delay.